Part Number Hot Search : 
RB480 69218 1775554 X24C01GM HMC533 74HC147D X5165S8 MBT2222
Product Description
Full Text Search
 

To Download SC1185 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  power management 1 www.semtech.com SC1185 & SC1185a programmable synchronous dc/dc converter, dual ldo controller features applications revision 1, december 2000 description the SC1185 combines a synchronous voltage mode con- troller with two low-dropout linear regulators providing most of the circuitry necessary to implement three dc/ dc converters for powering advanced microprocessors such as pentium ? ii . the SC1185 switching section features an integrated 5 bit d/a converter, pulse by pulse current limiting, inte- grated power good signaling, and logic compatible shut- down. the SC1185 switching section operates at a fixed frequency of 140khz, providing an optimum compromise between size, efficiency and cost in the intended appli- cation areas. the integrated d/a converter provides pro- grammability of output voltage from 2.0v to 3.5v in 100mv increments and 1.30v to 2.05v in 50mv incre- ments with no external components. the SC1185 linear sections are low dropout regulators supplying 1.5v for gtl bus and 2.5v for non-gtl i/o. the reference voltage is made available for external lin- ear regulators. u synchronous design, enables no heatsink solution u 95% efficiency (switching section) u 5 bit dac for output programmability u on chip power good function u designed for intel pentium ? ll requirements u 1.5v, 2.5v @ 1.25% for linear section u 1.265v 1.5% reference available u pentium ? ll microprocessor supplies u flexible motherboards u 1.3v to 3.5v microprocessor supplies u programmable triple power supplies typical application circuit 1.00k pwrgood 2.5v + 1500uf 2r2 irlr3103n + 330uf 1k vlin3 x4 0.1uf 1.9uh + 330uf vid3 3.3v SC1185cs 1 5 6 7 8 9 10 11 15 16 17 18 19 20 21 22 13 12 14 24 2 23 3 4 agnd vcc ref pwrgood cs- cs+ pgndh dh bsth en vosense vid4 vid3 vid2 vid1 vid0 dl pgndl bstl gate2 gate1 ldov ldos1 ldos2 + 330uf vid1 vid0 vid2 + 330uf 2.32k 0.1uf irlr024n + 1500uf 5v + 4.7uf 1.5v vid4 x6 5mohm irlr024n en 0.1uf vcc_core 2r2 12v irlr024n 3.3v 0.1uf 12v irlr3103n 10 + - lm358 3 2 1 8 4
2 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a electrical characteristics absolute maximum ratings r e t e m a r a pl o b m y sm u m i x a ms t i n u d n g o t c c vv n i 7 + o t 3 . 0 -v d n g o t d n g p +1 v d n g o t t s b 5 1 + o t 3 . 0 -v e g n a r e r u t a r e p m e t g n i t a r e p ot a 0 7 + o t 0c e g n a r e r u t a r e p m e t n o i t c n u jt j 5 2 1 + o t 0c e g n a r e r u t a r e p m e t e g a r o t st g t s 0 5 1 + o t 5 6 -c . c e s 0 1 ) g n i r e d l o s ( e r u t a r e p m e t d a e lt l 0 0 3c t n e i b m a o t n o i t c n u j e c n a d e p m i l a m r e h t q a j 0 8w / c e s a c o t n o i t c n u j e c n a d e p m i l a m r e h t q c j 5 2w / c r e t e m a r a ps n o i t i d n o cn i mp y tx a ms t i n u n o i t c e s g n i h c t i w s e g a t l o v t u p t u oi o t i u c r i c n o i t a c i l p p a n i a 2 =e l b a t e g a t l o v t u p t u o e e s e g a t l o v y l p p u sc c v5 . 47v t n e r r u c y l p p u sv 0 . 5 = c c v85 1a m n o i t a l u g e r d a o li o a 5 1 o t a 8 . 0 =1% n o i t a l u g e r e n i l +5 1 . 0% e g a t l o v t i m i l t n e r r u c 0 60 75 8v m y c n e u q e r f r o t a l l i c s o 5 2 10 4 10 6 1z h k e l c y c y t u d x a m r o t a l l i c s o 0 95 9% t n e r r u c e c r u o s / k n i s h d k a e p, v 5 . 4 = h d - h t s bv 1 . 3 = h d n g p - h d v 5 . 1 = h d n g p - h d 1 0 0 1 a a m t n e r r u c e c r u o s / k n i s l d k a e p, v 5 . 4 = l d - l t s bv 1 . 3 = l d n g p - l d v 5 . 1 = l d n g p - l d 1 0 0 1 a a m a ( n i a g l o )v e s n e s o v o t o 5 3b d t n e r r u c e c r u o s d i vx d i v 3 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a electrical characteristics (cont.) r e t e m a r a ps n o i t i d n o cn i mp y tx a ms t i n u s n o i t c e s r a e n i l t n e r r u c t n e c s e i u qv 2 1 = v o d l5a m 1 o d l e g a t l o v t u p t u o 9 6 4 . 20 0 5 . 21 3 5 . 2v 2 o d l e g a t l o v t u p t u o 1 8 4 . 10 0 5 . 19 1 5 . 1v e g a t l o v e c n e r e f e rf e r i< a 0 0 16 4 2 . 15 6 2 . 14 8 2 . 1v a ( n i a g l o )) 2 , 1 ( e t a g o t ) 2 , 1 ( s o d l0 9b d n o i t a l u g e r d a o li o a 8 o t 0 =3 . 0% n o i t a l u g e r e n i l 3 . 0% e c n a d e p m i t u p t u ov 5 . 6 = e t a g v15 . 1 w e c n a d e p m i n w o d l l u p e t a gv o = v o d l = c c v ; d n g a - ) 2 , 1 ( e t a g0 80 0 30 5 7k w e c n a d e p m i e s n e s o v 0 1k w note: (1) this device is esd sensitive. use of standard esd handling precautions is required.
4 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a note: (1) all logic level inputs and outputs are open collector ttl compatible. pin configuration ordering information pin descriptions r e b m u n t r a p ) 1 ( e g a k c a pr a e n i l e g a t l o v p m e t t ( e g n a r j ) r t . w s c 5 8 1 1 c s4 2 - o sv 5 . 2 v 5 . 1c 5 2 1 o t 0 r t . w s c a 5 8 1 1 c s4 2 - o sv 5 . 2 v 5 . 1c 5 2 1 o t 0 note: (1) only available in tape and reel packaging. a reel contains 1000 devices. (2) SC1185a provides improved output tolerance. see output voltage table. # n i pe m a n n i pn o i t c n u f n i p 1d n g ad n u o r g l a t i g i d d n a g o l a n a l a n g i s l l a m s 21 e t a g1 o d l t u p t u o e v i r d e t a g 31 s o d l1 o d l r o f t u p n i e s n e s 42 s o s l2 o d l r o f t u p n i e s n e s 5c c ve g a t l o v t u p n i 6f e rt u p t u o e g t l o v e c n e r e f e r d e r e f f u b 7d o o g r w p ) 1 ( v f i h g i h , t u p t u o c i g o l r o t c e l l o c n e p o o t n i o p t e s f o % 0 1 n i h t i w 8- s c) e v i t a g e n ( t u p n i e s n e s t n e r r u c 9+ s c) e v i t i s o p ( t u p n i e s n e s t n e r r u c 0 1h d n g ph c t i w s e d i s h g i h r o f d n u o r g r e w o p 1 1h dt u p t u o r e v i r d e d i s h g i h 2 1l d n g ph c t w s e d i s w o l r o f d n u o r g r e w o p 3 1l dt u p t u o r e v i r d e d i s w o l 4 1l t s br e v i r d e d i s w o l r o f y l p p u s 5 1h t s br e v i r d e d i s h g i h r o f y l p p u s 6 1n e ) 1 ( . n o i t a r e p o l a m r o n r o f n e p o r o h g i h . r e t r e v n o c e h t n w o d s t u h s w o l c i g o l 7 1e s n e s o vn i a h c k c a b d e e f l a n r e t n i f o d n e p o t 8 14 d i v ) 1 ( ) b s m ( t u p n i g n i m m a r g o r p 9 13 d i v ) 1 ( t u p n i g n i m m a r g o r p 0 22 d i v ) 1 ( t u p n i g n i m m a r g o r p 1 21 d i v ) 1 ( t u p n i g n i m m a r g o r p 2 20 d i v ) 1 ( ) b s l ( t u p n i g n i m m a r g o r p 3 2v o d ln o i t c e s o d l r o f v 2 1 + 4 22 e t a g2 o d l t u p t u o e v i r d e t a g 1 2 3 4 5 6 7 8 gate2 agnd top view (24 pin soic) 13 14 15 16 ldov gate1 vid0 ldos1 vid1 ldos2 vid2 vcc vid3 ref vid4 pwrgood vosense cs- 9 10 22 en cs+ bsth pgndh 21 18 17 19 20 11 12 24 bstl dh dl pgndl 23
5 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a block diagram cs+ + - d/a oscillator ref vid3 vosense en ldov control 1.265v ref open collectors bstl gate2 error amp agnd pgndl bsth vid2 vid4 vid1 + - dh cs- agnd vcc + - ref r s q level shift and high side + - dl agnd synchronous 2.5v fet controller pwrgood ldos1 ldos2 1.5v fet controller shoot-thru + - current limit pgndh 70mv gate1 vid0 mosfet drive mosfet drive
6 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a r e t e m a r a pd r a d n a t sn o i s r e v " a " d i v 0 1 2 3 4 n i mp y tx a mn i mp y tx a ms t i n u e g a t l o v t u p t u o1 1 1 1 07 7 2 . 10 0 3 . 13 2 3 . 17 8 2 . 10 0 3 . 13 1 3 . 1v 0 1 1 1 06 2 3 . 10 5 3 . 14 7 3 . 17 3 3 . 10 5 3 . 14 6 3 . 1 1 0 1 1 05 7 3 . 10 0 4 . 15 2 4 . 16 8 3 . 10 0 4 . 14 1 4 . 1 0 0 1 1 04 2 4 . 10 5 4 . 16 7 4 . 16 3 4 . 10 5 4 . 15 6 4 . 1 1 1 0 1 08 7 4 . 10 0 5 . 13 2 5 . 15 8 4 . 10 0 5 . 15 1 5 . 1 0 1 0 1 07 2 5 . 10 5 5 . 13 7 5 . 15 3 5 . 10 5 5 . 16 6 5 . 1 1 0 0 1 06 7 5 . 10 0 6 . 14 2 6 . 14 8 5 . 10 0 6 . 16 1 6 . 1 0 0 0 1 05 2 6 . 10 5 6 . 15 7 6 . 14 3 6 . 10 5 6 . 17 6 6 . 1 1 1 1 0 05 7 6 . 10 0 7 . 16 2 7 . 13 8 6 . 10 0 7 . 17 1 7 . 1 0 1 1 0 04 2 7 . 10 5 7 . 18 1 8 . 13 3 7 . 10 5 7 . 18 6 7 . 1 1 0 1 0 02 8 7 . 10 0 8 . 19 6 8 . 12 8 7 . 10 0 8 . 18 1 8 . 1 0 0 1 0 02 3 8 . 10 5 8 . 19 1 9 . 12 3 8 . 10 5 8 . 19 6 8 . 1 1 1 0 0 01 8 8 . 10 0 9 . 10 7 9 . 11 8 8 . 10 0 9 . 19 1 9 . 1 0 1 0 0 01 3 9 . 10 5 9 . 10 2 0 . 21 3 9 . 10 5 9 . 10 7 9 . 1 1 0 0 0 00 8 9 . 10 0 0 . 20 2 0 . 20 8 9 . 10 0 0 . 20 2 0 . 2 0 0 0 0 00 3 0 . 20 5 0 . 21 7 0 . 20 3 0 . 20 5 0 . 21 7 0 . 2 1 1 1 1 10 7 9 . 10 0 0 . 20 3 0 . 20 7 9 . 10 0 0 . 20 3 0 . 2 0 1 1 1 19 6 0 . 20 0 1 . 22 3 1 . 29 6 0 . 20 0 1 . 22 3 1 . 2 1 0 1 1 17 6 1 . 20 0 2 . 23 3 2 . 27 6 1 . 20 0 2 . 23 3 2 . 2 0 0 1 1 16 6 2 . 20 0 3 . 25 3 3 . 26 6 2 . 20 0 3 . 25 3 3 . 2 1 1 0 1 14 6 3 . 20 0 4 . 26 3 4 . 24 6 3 . 20 0 4 . 26 3 4 . 2 0 1 0 1 13 6 4 . 20 0 5 . 28 3 5 . 23 6 4 . 20 0 5 . 28 3 5 . 2 1 0 0 1 11 6 5 . 20 0 6 . 29 3 6 . 21 6 5 . 20 0 6 . 29 3 6 . 2 0 0 0 1 10 6 6 . 20 0 7 . 21 4 7 . 20 6 6 . 20 0 7 . 21 4 7 . 2 1 1 1 0 18 5 7 . 20 0 8 . 22 4 8 . 28 5 7 . 20 0 8 . 22 4 8 . 2 0 1 1 0 12 4 8 . 20 0 9 . 28 52 4 8 . 20 0 9 . 28 5 9 . 2 1 0 1 0 10 4 9 . 20 0 0 . 30 6 0 . 30 4 9 . 20 0 0 . 30 6 0 . 3 0 0 1 0 18 3 0 . 30 0 1 . 32 6 1 . 38 3 0 . 30 0 1 . 32 6 1 . 3 1 1 0 0 16 3 1 . 30 0 2 . 34 6 2 . 36 3 1 . 30 0 2 . 34 6 2 . 3 0 1 0 0 14 3 2 . 30 0 3 . 36 6 3 . 34 3 2 . 30 0 3 . 36 6 3 . 3 1 0 0 0 12 3 3 . 30 0 4 . 38 6 4 . 32 3 3 . 30 0 4 . 38 6 4 . 3 0 0 0 0 10 3 4 . 30 0 5 . 30 7 5 . 30 3 4 . 30 0 5 . 30 7 5 . 3 output voltage table unless specified: 4.75v < vcc < 5.25v; gnd = pgnd = 0v; vosense = v o ; 0mv < (cs+-cs-) < 60mv; = 0c < t j < 85c
7 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a layout guidelines careful attention to layout requirements are necessary for successful implementation of the SC1185 pwm control- ler. high currents switching at 140khz are present in the application and their effect on ground plane voltage differ- entials must be understood and minimized. 1). the high power parts of the circuit should be laid out first. a ground plane should be used, the number and position of ground plane interruptions should be such as to not unnecessarily compromise ground plane integrity. isolated or semi-isolated areas of the ground plane may be deliberately introduced to constrain ground currents to particular areas, for example the input capacitor and bot- tom fet ground. 2). the loop formed by the input capacitor(s) (cin), the top fet (q1) and the bottom fet (q2) must be kept as small as possible. this loop contains all the high current, fast transition switching. connections should be as wide and as short as possible to minimize loop inductance. mini- mizing this loop area will a) reduce emi, b) lower ground injection currents, resulting in electrically ?cleaner? grounds for the rest of the system and c) minimize source ringing, resulting in more reliable gate switching signals. 3). the connection between the junction of q1, q2 and the output inductor should be a wide trace or copper re- gion. it should be as short as practical. since this connec- tion has fast voltage transitions, keeping this connection short will minimize emi. the connection between the out- put inductor and the sense resistor should be a wide trace or copper area, there are no fast voltage or current transi- tions in this connection and length is not so important, however adding unnecessary impedance will reduce effi- ciency. vout 12v in 3.3v vo lin1 vo lin2 5v l 5mohm + cout + cin 10 q2 0.1uf q3 + cout lin1 2.32k q4 + cout lin2 1.00k + cin lin SC1185 agnd 1 vcc 5 ref 6 pwrgood 7 cs- 8 cs+ 9 pgndh 10 dh 11 bsth 15 en 16 vosense 17 vid4 18 vid3 19 vid2 20 vid1 21 vid0 22 dl 13 pgndl 12 bstl 14 gate2 24 gate1 2 ldov 23 ldos1 3 ldos2 4 q1 0.1uf heavy lines indicate hi g h current paths. layout dia g ram SC1185(a)
8 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a layout guidelines 4) the output capacitor(s) (cout) should be located as close to the load as possible, fast transient load cur- rents are supplied by cout only, and connections between cout and the load must be short, wide copper areas to minimize inductance and resistance. 5) the SC1185 is best placed over a quiet ground plane area, avoid pulse currents in the cin, q1, q2 loop flowing in this area. pgndh and pgndl should be returned to the ground plane close to the package. the agnd pin should be connected to the ground side of (one of) the output capacitor(s). if this is not possible, the agnd pin may be connected to the ground path between the output capacitor(s) and the cin, q1, q2 loop. under no circum- stances should agnd be returned to a ground inside the cin, q1, q2 loop. 6) vcc for the SC1185 should be supplied from the 5v currents in various parts of the power section supply through a 10 w resistor, the vcc pin should be decoupled directly to agnd by a 0.1 m f ceramic capacitor, trace lengths should be as short as possible. 7) the current sense resistor and the divider across it should form as small a loop as possible, the traces run- ning back to cs+ and cs- on the SC1185 should run parallel and close to each other. the 0.1 m f capacitor should be mounted as close to the cs+ and cs- pins as possible. 8) ideally, the grounds for the two ldo sections should be returned to the ground side of (one of) the output capacitor(s). vout 5v + +
9 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a layout guidelines component selection switching section output capacitors - selection begins with the most critical component. because of fast transient load current requirements in modern microprocessor core supplies, the output capacitors must supply all transient load current requirements until the current in the output inductor ramps up to the new level. output capacitor esr is therefore one of the most important criteria. the maximum esr can be simply calculated from: step current transient i excursion voltage transient maximum v where i v r t t t t esr = = for example, to meet a 100mv transient limit with a 10a load step, the output capacitor esr must be less than 10m w . to meet this kind of esr level, there are three available capacitor technologies. y g o l o n h c e t . p a c h c a e . y t q . d q r l a t o t c ( m ) f r s e m ( w ) c ( m ) f r s e m ( w ) m u l a t n a t r s e w o l0 3 30 660 0 0 20 1 n o c - s o0 3 35 230 9 93 . 8 m u n i m u l a r s e w o l0 0 5 14 450 0 5 73 . 8 the choice of which to use is simply a cost/performance issue, with low esr aluminum being the cheapest, but taking up the most space. inductor - having decided on a suitable type and value of output capacitor, the maximum allowable value of in- ductor can be calculated. too large an inductor will pro- duce a slow current ramp rate and will cause the output capacitor to supply more of the transient load current for longer - leading to an output voltage sag below the esr excursion calculated above. the maximum inductor value may be calculated from: () o in o a a t esr v v or v of lesser the is v where v i c r l - the calculated maximum inductor value assumes 100% and 0% duty cycle, so some allowance must be made. choosing an inductor value of 50 to 75% of the calculated maximum will guarantee that the inductor current will ramp fast enough to reduce the voltage dropped across the esr at a faster rate than the capacitor sags, hence ensuring a good recovery from transient with no additional excursions. we must also be concerned with ripple current in the out- put inductor and a general rule of thumb has been to allow 10% of maximum output current as ripple current. note that most of the output voltage ripple is produced by the inductor ripple current flowing in the output capacitor esr. ripple current can be calculated from: osc in l f l 4 v i ripple = ripple current allowance will define the minimum permit- ted inductor value. power fets - the fets are chosen based on several criteria with probably the most important being power dis- sipation and power handling capability. top fet - the power dissipation in the top fet is a combi- nation of conduction losses, switching losses and bottom fet body diode recovery losses. a) conduction losses are simply calculated as: in o ) on ( ds 2 o cond v v c y cle dut y = where r i p ? d d = b) switching losses can be estimated by assuming a switch- ing time, if we assume 100ns then: 2 in o sw 10 v i p - = or more generally, 4 f ) t t ( v i p osc f r in o sw + = c) body diode recovery losses are more difficult to esti- mate, but to a first approximation, it is reasonable to as- sume that the stored charge on the bottom fet body di- ode will be moved through the top fet as it starts to turn on. the resulting power dissipation in the top fet will be: osc in rr rr f v q p = to a first order approximation, it is convenient to only con-
10 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a layout guidelines sider conduction losses to determine fet suitability. for a 5v in; 2.8v out at 14.2a requirement, typical fet losses would be: using 1.5x room temp r ds(on) to allow for temperature rise. e p y t t e fr ) n o ( s d m ( w )p d ) w (e g a k c a p 5 2 0 4 3 l r i5 19 6 . 1d 2 k a p 3 0 2 2 l r i5 . 0 19 1 . 1d 2 k a p 0 1 4 4 i s0 26 2 . 28 - 0 s bottom fet - bottom fet losses are almost entirely due to conduction. the body diode is forced into conduction at the beginning and end of the bottom switch conduction period, so when the fet turns on and off, there is very little voltage across it, resulting in low switching losses. conduction losses for the fet can be determined by: ) 1 ( r i p ) on ( ds 2 o cond d - = for the example above: e p y t t e fr ) n o ( s d m ( w )p d ) w (e g a k c a p 5 2 0 4 3 l r i5 13 3 . 1d 2 k a p 3 0 2 2 l r i5 . 0 13 9 . 0d 2 k a p 0 1 4 4 i s0 27 7 . 18 - 0 s each of the package types has a characteristic thermal impedance, for the to-220 package, thermal impedance is mostly determined by the heatsink used. for the sur- face mount packages on double sided fr4, 2 oz printed circuit board material, thermal impedances of 40 o c/w for the d 2 pak and 80 o c/w for the so-8 are readily achiev- able. the corresponding temperature rise is detailed be- low: ( e s i r e r u t a r e p m e t o ) c e p y t t e ft e f p o tt e f m o t t o b 5 2 0 4 3 l r i6 . 7 62 . 3 5 3 0 2 2 l r i6 . 7 42 . 7 3 0 1 4 4 i s8 . 0 8 16 . 1 4 1 it is apparent that single so-8 si4410 are not adequate for this application, but by using parallel pairs in each position, power dissipation will be approximately halved and temperature rise reduced by a factor of 4. input capacitors - since the rms ripple current in the input capacitors may be as high as 50% of the output current, suitable capacitors must be chosen accordingly. also, during fast load transients, there may be restrictions on input di/dt. these restrictions require useable energy storage within the converter circuitry, either as extra out- put capacitance or, more usually, additional input capaci- tors. choosing low esr input capacitors will help maximize ripple rating for a given size.
11 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a typical characteristics typical efficiency at vo=2.8v 70% 75% 80% 85% 90% 95% 0246810121416 io (am ps) efficiency 2.8v std 2.8v sync 2.8v sync lo rds typical efficiency at vo=2.0v 70% 75% 80% 85% 90% 95% 0246810121416 io (amps) efficiency 2.0v std 2.0v sync 2.0v sync lo rds typical efficiency at vo=2.5v 70% 75% 80% 85% 90% 95% 0 2 4 6 8 10 12 14 16 io (am ps) efficiency 2.5v std 2.5v sync 2.5v sync lo rds typical efficiency at vo=3.5v 70% 75% 80% 85% 90% 95% 0 2 4 6 8 10 12 14 16 io (am ps) efficiency 3.5v std 3.5v sync 3.5v sync lo rds transient response vo=2.8v, io=300ma to 10a typical ripple, vo=2.8v, io=10a
12 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a typical application circuit offset mv/v 0 2 2 2 5 5 5 10 10 10 j12 s1 1 2 3 4 5 6 j17 con4 1 2 3 4 + c16 330uf j23 + c21 1500uf r1 10 r17 see table r10 2r2 + c11 330uf vid0 + c24 330uf j14 + c26 4.7uf vid3 r18 100 100 100 droop mv/a 0 1 2 5 1 2 5 1 2 5 12v c10 0.1uf + c7 1500uf l1 1.9uh r4 1.00k vid 43210 11111 11110 11101 11100 11011 11010 11001 11000 10111 10110 10101 10100 10011 10010 10001 10000 j19 r5 2.32k + c18 1500uf q6 irlr024n r11 see table 2 r6 2r2 + c8 1500uf q1 irlr3103 j21 3.3v + c9 1500uf + c25 330uf j15 j1 + c3 1500uf vid2 j22 u3 SC1185cs 1 5 6 7 8 9 10 11 15 16 17 18 19 20 21 22 13 12 14 24 2 23 3 4 agnd vcc ref pwrgood cs- cs+ pgndh dh bsth en vosense vid4 vid3 vid2 vid1 vid0 dl pgndl bstl gate2 gate1 ldov ldos1 ldos2 table valid for 1x5mohm sense resistor + c17 330uf j20 c4 0.1uf r18 see table + c20 1500uf + c15 330uf vid 43210 01111 01110 01101 01100 01011 01010 01001 01000 00111 00110 00101 00100 00011 00010 00001 00000 3.3v vcc_core q7 irlr024n c13 0.1uf + c23 1500uf r11 (ohm) 0 2.5 3.3 empty 6.3 8.3 empty 12.5 16.7 empty vid1 c1 0.1uf vlin3 r16 0 q5 irlr024n + c12 330uf 1.5v r7 2r2 q4 irlr3103n 5v r9 2r2 j25 r15 see table 2 12v vout 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 r12 1k vlin3 1.5v 1.8v 2.5v + c14 330uf 2.5v q2 irlr3103n r15 (ohm) empty 10 5 2 25 12.5 5 50 25 10 c5 0.1uf vout no cpu 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 vid4 + c2 1500uf j16 con4 1 2 3 4 + c6 1500uf j18 scope tp j24 r8 5mohm + c22 1500uf + - u2a lm358 3 2 1 8 4 q3 irlr3103n + c19 1500uf j13 r17 18.7 42.2 97.6 en r3 empty
13 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a materials list m e t i. y t qe c n e r e f e re u l a vs e t o n 15 3 1 c , 0 1 c , 5 c , 4 c , 1 cc i m a r e c f u 1 . 0 22 1 , 0 2 c , 9 1 c , 8 1 c , 9 c , 8 c , 7 c , 6 c , 3 c , 2 c 3 2 c , 2 2 c , 1 2 c f u 0 0 5 1r s e w o l . v i u q e r o x g - v m o y n a s 38 5 2 c , 4 2 c , 7 1 c , 6 1 c , 5 1 c , 4 1 c , 2 1 c , 1 1 cf u 0 3 3 41 6 2 cf u 7 . 4 51 1 lh u 9 . 1 s l a t e m o r c i m n o g w a 6 1 s n r u t 6 e r o c d 2 5 - 0 5 t 64 4 q , 3 q , 2 q , 1 qn 3 0 1 3 r l r i 73 7 q , 6 q , 5 qn 4 2 0 r l r i 81 1 r0 1 91 3 ry t p m e 0 11 4 rk 0 0 . 1 1 11 5 rk 2 3 . 2 2 14 0 1 r , 9 r , 7 r , 6 r2 r 2 3 11 8 rm h o m 5s e i r e s 1 - r a o c r i 4 12 1 1 r , 5 1 re l b a t e e s 5 11 2 1 rk 1 6 11 6 1 r0 7 12 8 1 r , 7 1 re l b a t e e s 8 11 2 u8 5 3 m l 9 11 3 us c 5 8 1 1 c sh c e t m e s
14 ? 2000 semtech corp. www.semtech.com power management SC1185 & SC1185a semtech corporation power management products division 652 mitchell rd., newbury park, ca 91320 phone: (805)498-2111 fax (805)498-3804 outline drawing contact information


▲Up To Search▲   

 
Price & Availability of SC1185

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X